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Graph invariants for periodic systems: Towards predicting physical properties
from the hydrogen bond topology of ice

Jer-Lai Kuo and Sherwin J. Singer*
Department of Chemistry, Ohio State University, 100 W. 18th Avenue, Columbus, Ohio 43210

~Received 30 August 2002; published 28 January 2003!

Ice-Ih consists of a disordered hydrogen-bonded network. The degree of disorder in ice-Ih, and possible
phase transitions to an ordered phase have been debated in recent years. The dependence of energy, free energy,
and other scalar physical properties on H-bond topology is needed to understand these phenomena. Graph
invariants provide a means of linking physical properties to the topology of the H-bond network. We have
previously shown the effectiveness of graph invariants for finite water clusters@J.-L. Kuo, J. V. Coe, S. J.
Singer, Y. B. Band, and L. Ojama¨e, J. Chem. Phys.,114, 2527~2001!#. In this work, we develop a formalism
for the graph invariants of periodic systems. We demonstrate that graph invariants for small unit cells are a
subset of the graph invariants of larger unit cells, providing a hierarchy of approximations by which detailed
calculations for small unit cells, such as periodicab initio calculations as they become available, can be used
to parametrize the energy of the astronomical number of H-bond arrangements present in large unit cells. We
also present graph enumeration results for ice-Ih, analyzing conflicting results that have appeared previously in
the literature and furnishing information on the statistical properties of the H-bond network of ice-Ih in the
large system limit.

DOI: 10.1103/PhysRevE.67.016114 PACS number~s!: 05.10.2a, 64.60.Cn
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Hydrogen bond order and disorder in ice-Ih is an o
problem that is still the subject of controversy. Since t
work of Pauling, Giauque and and Stout in the 1930s@1,2#, it
is believed that the protons in ice-Ih are disordered, sub
to the constraints of the Bernal-Fowler ‘‘ice rules’’@3#, that
each water donates to two hydrogen bonds~H bonds! and
accepts from two other H bonds. The number of allow
hydrogen bonding arrangements in an infinite periodic lat
has been well-established@1,4,5#. However, conflicting re-
sults for the number of distinct H-bond arrangements in
riodically replicated units cells, candidates for a possi
low-temperature ordered phase of ice, have appeared in
literature@6–8#. Small energy differences between hydrog
bond arrangements in ice may induce a phase transition
proton-ordered crystal, although under normal conditions
transition is kinetically inaccessible. Most experimental
ports center around a first-order transition at 72 K to a fer
electric structure@9–17#. However, a substantially differen
transition temperature has been reported@18#, and the ferro-
electric nature of the low-temperature structure has b
questioned as well@19,20#.

The purpose of this work is to extend our graph theor
cal techniques, originally developed for water clusters@21#,
to periodically replicated systems, providing analytic tools
address the issues mentioned above. We develop the co
of graph invariants for periodically replicated systems
Graph invariants are functions of hydrogen bond variab
which are invariant to the symmetry operations of the s
tem. In other words, graph invariants are symmetry-adap
functions that are appropriate for describing how the sc
properties—e.g., total energy, free energy, squared ma
tude of the dipole moment, etc.—depend on the arrangem
of H bonds.

*Electronic address: singer@chemistry.ohio-state.edu
1063-651X/2003/67~1!/016114~18!/$20.00 67 0161
e

ct

d
e

-
e
he

a
e
-
-

n

i-

ept

s
-
d
r

ni-
nt

Graph invariants serve two important functions.
~1! They enable the enumeration of all symmetry-distin

H-bond arrangements by changing it from anO(N2) to
O(N ln N) problem@21#.

~2! They provide a means to systematically parametr
physical properties of water clusters or ice configuratio
that differ in their H-bond topology.

In this work we use graph invariants to facilitate the lis
ing of all the hydrogen bonding arrangements accessibl
several unit cells of the ice-Ih lattice. We resolve the discr
ancies in the literature@6–8# for small unit cells. We also
provide results for larger unit cells containing billions of di
ferent H-bond arrangements, which are of sufficient size
serve as simulation cells for statistical calculations. W
these data in hand, we analyze properties of hydrogen bo
ing in ice-Ih that depend exclusively on the topological co
straints of the crystal lattice and satisfy the ice rules.

In a previous work on water clusters@21# we demon-
strated that graph invariants furnish a very useful set
symmetry-adapted functions for capturing the dependenc
scalar physical properties, such as energy, free energy,
on the arrangement of H bonds@21#. In that work we devel-
oped a hierarchy of invariants—first-order, second-order,
higher-order invariants~they are defined in Sec. III!—and
that physical properties of water clusters could be descri
quite well in terms of the simplest of the invariants, the fir
and second-order invariants. The first-order invariants are
ten identically zero, as they are for the ice-Ih lattice. Usi
invariants to parametrize the dependence of cluster energ
its H-bond topology, we successfully described the energy
;104–105 different hydrogen bond isomers of a (H2O)20
cluster, spanning a range of;50 kcal/mol, with only seven
numbers, one of which sets the zero of the energy scale@21#.
In this work, we show how the same procedure may
adopted for crystal lattices. At the same level of approxim
©2003 The American Physical Society14-1
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tion that was successful for clusters, we show here tha
the order of ten numbers should parametrize the energies
other scalar physical quantities of the billions of H-bond is
mers that are possible in a large unit cell of ice-Ih. The g
of this work is to provide the theoretical framework th
reduces the description of large numbers of H-bond isom
to a handful of parameters. The value of those parame
must come from future detailed calculations, such as perio
ab initio calculations for ice, or from experiment.

The implication of these results is that a relatively sm
number of calculations should suffice to predict the low
energy structure and phase transitions in ice-Ih. This is
nificant because different H-bond arrangements in ice
closely spaced in energy and it is difficult to predict th
energetic ordering. Buch, Sandler, and Sadlej have dem
strated that empirical water potentials give inconsistent p
dictions of the relative stability of these arrangements@8#.
This information will have to be obtained from costly pe
odic electronic structure calculations. It is currently not fe
sible to perform electronic structure calculations for eve
symmetry-distinct H-bond arrangement for a unit cell lar
enough for statistical simulations. Even such calculations
a Monte Carlo sample would be quite taxing. Instead of s
expensive routes, our techniques offer the possibility of
tracting parameters from calculations on small unit cells a
bootstrapping to estimate the energy of hydrogen bond
rangements in much larger cells. To accomplish this task,
require the relationship between the graph invariants of sm
unit cells and those of large unit cells, which is developed
this work.

In Sec. I we provide a ‘‘gentle introduction’’ to grap
invariants, using an artificial two-dimensional ‘‘square ic
lattice as an example to illustrate the basic idea with a m
mum of formalism. In Sec. III we precisely define grap
invariants, and how they are generated by group theore
projection operators~Sec. III A!. In Sec. III B we develop the
relation between graph invariants for small and large u
cells, and the key concept that permits the physical pro
ties of large unit cells to be parametrize by calculations
small unit cells. The concepts are illustrated in Sec. III C
returning to the example of ‘‘square ice.’’ The reader n
interested in the details of the formalism can gather the b
ideas by reading Secs. I, II, and III C.

Section IV contains applications to ice-Ih. Graph inva
ants for the common eight-water molecule orthorhombic u
cell of ice-Ih are presented in Sec. IV A and the Append
Graph invariants also provide an efficient means for co
plete enumeration of all symmetry-distinct H-bond arran
ments for either a cluster or periodic system. Applications
ice-Ih are presented in Sec. IV B. Graph invariants per
complete enumeration of unit cells large enough to appro
mate the infinite-system limit. Our largest example is a 4
molecule water hexagonal unit cells for which there a
2404 144 962 possible H-bond arrangements permitted
the ice rules, of which 8360 361 are symmetry distinct.
Sec. IV C we analyze selected statistical properties of th
arrangements. Finally, we present some concluding rem
in Sec. V.
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I. A GENTLE INTRODUCTION TO ORIENTED GRAPHS
AND GRAPH INVARIANTS

Each hydrogen bond in ice or water clusters consists o
hydrogen covalently bonded to one oxygen, the donor,
hydrogen bonded to a second oxygen, the acceptor. Hen
bonds are directional, and are conventionally taken to po
from donor to acceptor. Proton arrangements in ice are s
marized by oriented graphs, a set of vertices linked by
rected edges@22–24#. The symbolbr stands for the orienta
tion of the r th hydrogen bond with respect to a canonic
orientation,br511 if the H bond points in the same direc
tion as the canonical orientation,br521 if the direction is
opposite.

To illustrate the theory, let us take a simple examp
‘‘square ice,’’ which, like ordinary ice, consists of four
coordinate water molecules.~Of course, applications to the
real ice-Ih lattice are presented below in Sec. IV.! Part of the
square ice lattice and the direction of bonds, all in an ar
trarily chosen canonical bond orientation, are shown in F
1. Six possible graphs within the 232 unit cell of square ice,
shown in Fig. 2, when periodically replicated realize
H-bond topology in agreement with the Bernal-Fowler i
rules. The eight bonds of the 232 unit cell are given an
arbitrary index ranging from 1 to 8, as indicated in graphA
of Fig. 2. The value of the bond variablesb1 ,b2 , . . . ,b8 for
the graphs in Fig. 2 are given in Table I.

Some of the graphs shown in Fig. 2 are related to e
other by a symmetry operation. GraphD is obtained from
graph A by either a C4 rotation or reflection operation
Therefore, the energy and other scalar properties of the
configurations should be identical. The same is true
graphsB andE, and graphsC andF. If the energy depends
on the topological features of the H-bond network, then
must depend upon functions of the bond variablesbr that are
identical for configurations related by a symmetry operati

Consider the combination of bond variables,

I 13
2325

1

4
~b1b31b2b41b5b61b7b8!, ~1!

which is an example of agraph invariant. ~The origin of the
notation I 13

232 and the normalization constant will be ex

FIG. 1. A square ice lattice used to illustrate graph invarian
The molecular configuration, shown on the left, is summarized
the directed graph appearing on the right. The hydrogen bond
rangement shown here is adopted as the canonical bond orienta
Other periodic hydrogen bond arrangements are possible, as
trated in Fig. 2.
4-2
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GRAPH INVARIANTS FOR PERIODIC SYSTEMS: . . . PHYSICAL REVIEW E 67, 016114 ~2003!
plained later.! Notice in Table I thatI 13
232 has exactly the

same value among the three pairs of graphs related by s
metry operations.I 13

232 also has a clear physical interpret
tion. It is a sum of dot products of four pairs of parall
bonds. I 13

232 effectively counts the number of hydroge
bonded pairs in which nonparticipating hydrogens lie on
same side of the hydrogen bond. Bjerrum postulated that
type of bond has higher energy than those in which the n
bonded hydrogens are more distant@25,26#. Instead of the
more complicated notation of Bjerrum, which is only mea
ingful for the three-dimensional ice-Ih lattice, we will follow

FIG. 2. Graphs that lead to periodic hydrogen bond patte
satisfying the Bernal-Fowler ice rules in the square ice lattice
picted in Fig. 1. In graphA the bonds are arranged in their canonic
orientation, the same one shown in Fig. 1. The eight bonds ass
ated with the 232 unit cell are numbered according to the sche
indicated in graphA. In some graphs the bonds associated with u
cells neighboring the primary unit cell are shown to make it m
apparent how the orientations of complete water molecules are
dicated by the graphs. For example, in graphB the periodic image
of bond 4 is actually drawn to the left of bond 3. In graphB bond
variablesb1 , b2 , b5 , b6 , b7, and b8 all have value11, while
bondsb3 andb4 have value21, all defined relative to the canon
cal orientations of graphA.

TABLE I. Value of the bond variables and graph invariants a
sociated with each of the graphs depicted in Fig. 2.

Graph
A B C D E F

b1 1 1 1 1 1 21
b2 1 1 21 1 1 1
b3 1 21 21 1 1 1
b4 1 21 1 1 1 21
b5 1 1 21 21 1 1
b6 1 1 1 21 21 21
b7 1 1 1 21 1 21
b8 1 1 21 21 21 1
I 13

232 1 0 21 1 0 21
I 23

232 1 0 1 1 0 1
I 12

232 1 1 21 1 1 21
I 15

232 0 0 21 0 0 21
I 11

232 1 1 1 1 1 1
01611
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Buchet al. @8# and refer to bonds with nonbonded hydroge
on the same side as ‘‘cis,’’ and others as ‘‘trans.’’ In Fig.
all four bonds of graphsA andD are cis. In graphsB andE
the bonds connecting waters along thex axis are cis, while
those connecting waters along they axis are trans. None o
the bonds are cis in graphsC andF.

Clearly,ncis52(I 13
23211), as follows from the dot prod-

uct nature of Eq.~1! and can be verified from Fig. 2. Hence
if Bjerrum’s conjecture turns out to be correct then the gra
invariant I 13

232 will be the appropriate link between a scal
physical property, the energy in the case of Bjerrum’s co
jecture, and the topology of the H-bond network. If the co
jecture is valid, we would be able to approximate the dep
dence of energy on the H-bond topology by a relation of
form,

E'E01a13I 13
232 . ~2!

The validity of Bjerrum’s notion of strong and weak H bond
has been debated for many years in the literature@8,26–28#.
While certainly appropriate for the water dimer@29#, it is not
clear that H bonds in ice-Ih fall into strong and weak grou
according to their cis/trans nature. The reliable way to id
tify which topological features of the H-bond lattice are mo
relevant to its stability is to systematically identifyall
symmetry-invariant features of the H-bond topology up
which scalar physical properties may depend. For the 232
unit cell of our square ice example, there are four other gr
invariants that depend upon pairs of bond variables,

I 23
2325

1

4
~b2b31b1b41b6b71b5b8!, ~3!

I 12
2325

1

4
~b1b21b3b41b5b71b6b8!, ~4!

I 15
2325

1

16
~b1b52b2b52b3b51b4b51b1b61b2b61b3b6

2b4b61b1b71b2b71b3b72b4b71b1b82b2b8

2b3b81b4b8!, ~5!

I 11
2325

1

8
~b1

21b2
21b3

21b4
21b5

21b6
21b7

21b8
2!. ~6!

An improvement over Eq.~2! would be given by using all
the invariants that depend on bond variables,

E'E01a13I 13
2321a23I 23

2321a12I 12
2321a15I 15

2321a11I 11
232 .

~7!

While Eqs.~2! and~7! are written for the energy, we empha
size that the dependence of any scalar physical quantity
H-bond topology can be parametrized in that fashion.

For the ice lattice, both real ice-Ih and our illustrativ
example square ice, all invariant linear combinations
single bond variables~first-order invariants! are identically
zero. The graph invariants in Eqs.~1!–~6! are a complete se
of invariant bond combinations for the 232 unit cell of
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J.-L. KUO AND S. J. SINGER PHYSICAL REVIEW E67, 016114 ~2003!
square ice that can be constructed from products of two b
variables. We call such combinations of pairs of bond va
ables second-order invariants. Procedures for generatin
graph invariants are described in Sec. III. More complica
invariants, made from products of three or more bond v
ables~third- and higher-order graph invariants! are possible
as well, although one may hope for convergence with
respect to description of physical properties as more com
cated invariants are included. We have been able to do
ment that second-order invariants adequately describe the
pendence of energy and other scalar properties on hydro
bond topology in clusters@21#.

The four additional invariants presented in Eqs.~3!–~6!
can be assigned physical interpretations, just as we discu
for I 13

232 with relation to Bjerrum’s conjecture regarding c
and trans H bonds. For example,I 12

232 measures the degree
which chains of H bonds along thex or y direction align in
the same direction. Because of the constraints of the
rules, this also measures the number of water molec
whose OH bonds are both parallel to thex or y direction.
~Only graphsC andF contain such waters. All other graph
contain waters with one bond pointing alongx and one point-
ing alongy.! I 15

232 can be seen to measure this same prope
In fact, with regard to the graphs shown in Fig. 2,I 12

232 and
I 15

232 are linearly dependent upon each other:I 12
23252I 15

232

11. It often happens that, when evaluated for graphs
satisfy constraints such as the ice rules, invariants are
early dependent upon each other. Relaxing the ice rules
example, by allowing hydronium or hydroxide to appear
the lattice, will break the linear dependence of the invaria
The invariantI 11

232 is rather trivial for the graphs shown i
Fig. 2, merely giving the fraction of filled H bonds in a un
cell.

Let us return to Bjerrum’s conjecture that the energy
different H-bond topologies can be linked to the number
cis or trans H bonds present in the lattice. The beauty
Bjerrum’s simple conjecture is that it can be applied to b
regular, periodic patterns of H bonds, as well as disorde
arrangements. Put another way, the number of cis and t
H bonds is a topological invariant for a periodically rep
cated lattice of arbitrary size, for small unit cells, cells lar
enough for numerical simulations, or cells whose size te
toward infinity in the true thermodynamic limit. We wil
demonstrate in this paper that this property of cis and tran
bonds is shared by all the invariants we generate: invari
like the ones we presented in Eqs.~1!–~6! for the 232 unit
cell of the square ice lattice are also invariants of larger u
cells.

Larger unit cells will also generate new invariants th
have no counterpart in small unit cells. However, these n
invariants involve bond combinations more distant from ea
other than in a small unit cell. As a result, one may exp
that at a certain point these new, long-range invariants
not be important in capturing physical properties of the s
tem. This sets up a strategy for describing the propertie
large unit cells, those large enough for statistical simulati
in terms of properties derived from small unit cells. Ev
though the large unit cells admit millions or billions o
01611
d
i-

d
i-

e
li-
u-
e-
en

ed

e
es

y.

at
n-
or

s.

f
f
f

h
d
ns

s

H
ts

it

t
w
h
t

ill
-
of
s

H-bond topologies, the energy, free energy, or other sc
physical properties of each of these topologies, if our pre
ous calculation for clusters@21# is any guide, depend upo
the value of a handful of invariants.

II. HOW DETAILED CALCULATIONS FOR SMALL UNIT
CELLS CAN APPLY TO SYSTEMS LARGE ENOUGH

FOR STATISTICAL SIMULATIONS

The properties of invariants illustrated for ‘‘square ice’’
the preceding section, and shown in Sec. III to hold qu
generally, sets up a scheme by which information from sm
unit cells can be used to treat the statistical properties of c
large enough to approach the thermodynamic limit.

The potential energy surface for ice-Ih consists of a nu
ber of deep minima, each corresponding to a different hyd
gen bond topology. Working within the framework of class
cal statistical mechanics, the classical configuration integ
can be written as a sum of contributions from each ofM
symmetry-distinct local minima of the potential energy su
face @30–38#,

ZN5E drNe2bV(rN)5(
i 51

M

f ie
2bEiE

Di

drNe2b[V(rN)2V(r i
N)] .

~8!

We use a boldfaceN to stand for (NO,NH), the number of
hydrogen and oxygen atoms. The position of the atoms at
i th local minimum is denoted asr i , Di is a N-dimensional
integration domain about thei th minimum,Ei[V(r i

N) is the
potential energy at thei th minimum, andf i is the number of
symmetry-related configurations that are represented by
symmetry-distinct configuration. The canonical partitio
function of the system is given as

QN5(
i 51

M
f i

L3NN!
e2bEiE

Di

drNe2b[V(rN)2V(r i
N)]

[(
i 51

M

f ie
2b(Ei1Av ib,i ). ~9!

In keeping with the notation of Eq.~8!, L3NN! stands for
(LO

3NOLH
3NHNO!NH!), where Lk is the thermal de Broglie

wavelength of atomk, Lk5Abh2/2pmk, andmk is the mass
of atomk.

The contribution of each isomer to the partition functio
is determined by the potential energyEi of the isomer, and
an integral over ‘‘vibrational’’ or ‘‘phonon’’ fluctuations
about thei th local minimum of the potential energy surfac
whose contribution we call the vibrational free energyAv ib,i .
At sufficiently low temperature the classical procedure co
be modified to incorporate quantum effects, for example,
calculating Av ib,i quantum mechanically. Here, we hav
made use of classical statistical mechanics to illustrate
use of invariants with a minimum of formalism.
4-4
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Calculating theEi andAv ib,i for the billions of hydrogen
bond topologies found in a ‘‘simulation cell,’’ a unit ce
large enough to approximate the thermodynamic limit, is
feasible, yet it is what would be needed to, say, predict p
ton ordering phase transitions in ice-Ih. The graph invaria
we introduce in this work provide a way to circumvent t
need to calculate all theEi andAv ib,i . First consider how the
scheme would work for the energy if one accepted Bjerru
conjecture about cis and trans H bonds. The energy dif
ence between a cis and a trans H bond in ice-Ih could
established byab initio calculations on small unit cells, fo
which this type of detailed calculation is feasible. Suchab
initio calculations are not possible for billions of H-bon
arrangements in large simulation cells, but we have sho
that it is certainly possible to enumerate all the H-bond
pologies for large cells, determining the coefficientsf i in Eq.
~9! and properties such as the cis-trans bond distribution
all topologies@21#. The energiesEi for the billions of topolo-
gies possible for large unit cells would be given, relative
an all-trans configuration, by counting the number of
bonds in each topology and multiplying by the cis-trans
ergy difference. This illustrates the two ingredients neede
our scheme, parameters derived from detailed calculat
~such asab initio! on small unit cells and enumeration resu
for a larger simulation cell. It also illustrates that an invaria
for small unit cells, in this case the number of cis and tran
bonds, is also an invariant for large cells and that the e
getic parameter obtained for small cells is applicable t
large cell.

Of course, using a single parameter, the relative num
of cis and trans H bonds, is not likely to furnish an accur
description of ice-Ih. This work gives the proper generaliz
tion of this idea, showing how a hierarchy of parameters,
graph invariants, can be generated, and how graph invar
of increasing complexity can be added until convergenc
attained. In our previous work, we showed how even lo
order invariants provided a reasonable description of the
ergetics and dipole moment of the H-bond isomers in wa
clusters@21#. Even when using the appropriate graph inva
ants, the two ingredients remain detailed calculations
small unit cells and an enumeration of H-bond topologies
large cells.

To describe phase transitions, free energetics, not just
ergetics, are required. However, any scalar physical prop
can be parametrized with graph invariants. Therefore,
vibrational free energiesAv ib,i are equally amenable to pa
rametrization with graph invariants. We briefly discuss a f
methods by whichAv ib,i might be obtained, just to empha
size that graph invariants do furnish a feasible route to p
dict phase transitions in ice-Ih. In a harmonic approximati
V(rN)2V(r i

N) would be taken as a quadratic function in d
viations fromr i

N and the range of integration overDi could
be safely extended to all space. In the harmonic approxi
tion, the contribution ofAv ib,i to the heat capacityCV is
identical for all H-bond isomers, and the temperature dep
dence ofCV is fixed by the energiesEi . Calculation of the
heat capacity for a model water cluster is given in our p
vious work@21#, showing that the invariant scheme is a fe
01611
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sible route to thermodynamic properties. It also might be
reasonable assumption to replaceAv ib,i by an average value
Āv ib for each of the isomers, in which caseQN

'e2bĀv ib( i 51
M f ie

2bEi.

III. GRAPH INVARIANTS

Graph invariants, functions of bond variables that are
changed under any symmetry operations, can be constru
using standard group theoretical projection operators.
application of a projection operator to a single bond variab
br , takes the form

I r5Cr(
a

ga~br !, ~10!

where Cr is a normalization constant chosen for conv
nience,ga is a member of the symmetry group of the syste
and the sum runs over the entire symmetry group. The c
acters of the totally symmetric representation are ident
for all symmetry operations. Therefore, to construct a lin
combination that transforms according to the totally symm
ric representation of the group, the termsga(br) are com-
bined in Eq.~10! with equal coefficients. The appropriat
group for a crystal lattice is the space group. We assume
the crystal is large and periodic, so the translation subgr
is of order NxNyNz ~or obviously NxNy for a two-
dimensional lattice such as square ice!. We usex,y,z to des-
ignate the crystal axes, but nothing in our formalism requi
that these axes be orthogonal.

Other invariants can be constructed similarly:

I rs5Crs(
a

ga~brbs!, ~11!

I rst5Crst(
a

ga~brbsbt!, ~12!

A

Throughout this work we conveniently take the normaliz
tion constant to be the inverse of the order of the group,uGu,
making the invariants intensive quantities,

Crs . . . 5
1

uGu
. ~13!

We refer toI r as a first-order invariant,I rs as a second-
order invariant, and so on. From the definition of invarian
it is obvious to see thatI rs5I sr . More generally, invariants
with permuted subscripts are equivalent. When all bonds
filled, all bond variablesbr561. Therefore we haveI rr
5const, as well asI rrstu . . . 5I stu . . . . Products of invariants
are also invariants. For example, products of two first-or
invariants can be expanded as a linear combination
second-order invariants, products of first and second a
linear combination of third-order invariants, and so on,
4-5
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I r I s5(
tu

ctu
r ,sI tu , ~14!

I r I st5(
uvw

cuvw
r ,st I uvw , ~15!

A5A

We have previously shown that if a symmetry operation c
bring a single bondbr into 2br , the first-order invariant of
br is identically zero @21#. More generally, if ga(br)
56bs , I r and I s are equivalent. Local constraints, for e
ample, ice rules, can cause further degeneracy, as was
trated in Sec. I.

Scalar physical properties that depend on hydrogen b
topology will be a function of graph invariants. The simple
relationship, linear dependence, is illustrated below for
energy, although any scalar physical quantity can be par
etrized in a similar fashion:

E5E01(
r

a r I r1(
rs

a rsI rs1(
rst

a rstI rst1•••. ~16!

The above expression will always be valid if the physic
differences between H-bond arrangements are not too g
We have shown that the linear expansion can be still q
successful for water clusters@21#, even when energetic dif
ferences between H-bond isomers are rather great. In
~16! the graph invariants provide a vector space over H-b
topologies. In particular, the graph invariants are symme
adapted combinations that span the symmetry invariant
space.

The linear expansion of Eq.~16! is not the most genera
relation between scalar properties and H-bond topology,
in certain situations we may expect nonlinear dependenc
physical properties on the invariants. To give an example
a simple model where the total dipole moment arises fr
bond dipolesmr , the total dipole moment could be express
in terms of our bond variables as

m5(
r

brmr ~17!

and we expect the squared magnitude of the total dip
moment to be well described by a linear expansion
second-order graph invariants,umr u2'( rsa rsI rs , and indeed
find this to hold nicely for H-bond topologies of the (H2O)6
cage cluster@21#. This implies that a linear expansion ofumr u
itself through second-order invariants would not be as s
cessful, unless a series expansion of the square root ofumr u2

converged rapidly. Instead, the nonlinear functi
A( rsa rsI rs would be the expansion of choice forumr u. ~For
nonlinear functions, the classification of invariants into fir
second, and higher orders loses its significance.! Of course,
since products of invariants are also invariants@Eqs.~14! and
~15!#, a linear expansion forumr u in the form of Eq.~16!
would eventually converge, but might require higher-ord
terms.
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A. Graph invariants and space groups

Symmetry properties are manifested by a group of perm
tation operations mapping the set of vertices onto the
selves. A list of adjacent vertices~vertices connected by a
bond, irrespective of the bond’s direction! is preserved by
each of the symmetry operations. The space group of a c
tal can be treated as a finite group by invoking perio
boundary conditions. Consider a lattice with possibly non
thogonal unit cell vectors$ax ,ay ,az%. The full space group
is designated asG. G, the crystallographic translationa
group, is generated by the elementary translation opera
$txtytz%, wheretx

uty
vtz

v(R)5R1uax1vay1waz . That is,

G5$tx
uty

vtz
vuu50,1, . . . ,Nx21, v50,1, . . . ,Ny21,

w50,1, . . . ,Nz21%. ~18!

We will always assume a large but finite crystal with period
boundary conditions,

tx
u1Nx5tx

u , ty
v1Ny5ty

v , andtz
w1Nz5tz

w . ~19!

Hence,G becomes a finite group anduGu, the order ofG, is
NxNyNz .

As is well known in the theory of space groups@39#, G
can be decomposed into a sum of cosets ofG,

G5Gp1øGp2øGp3ø . . . , ~20!

where thepb are coset representatives andø stands for a
summation of two sets, which is the set of all objects that
contained in at least one of the sets. The set of cosets fo
the factor groupG/G. Conventionally, the coset represent
tive pb is chosen to be a pure point group operation if po
sible, or a space group operation involving a minimal tra
lation if a screw or glide operation.

The projection operation for the totally symmetric repr
sentation ofG, denoted here asĜ, is generated by applying
all operations of the group with coefficients proportional
the characters of the totally symmetric representation, tha
with equal coefficients. The projection operator for the
tally symmetric representation of the pure translation gro
denoted here asĜ, is simply

Ĝ5 (
u50

Nx21

(
v50

Ny21

(
w50

Nz21

~tx!
u~ty!v~tz!

w, ~21!

and for the full space group the projection operator is

Ĝ[ (
aPG

ga5 (
bPG/G

Ĝpb . ~22!

The first sum is over all elements inG, while the second sum
is over the coset representatives. Our previous equat
~10!, ~11! for graph invariants can be rewritten in terms
projection operators:
4-6
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I r5CrĜ~br !, I rs5CrsĜ~brbs!, I rst5CrstĜ~brbsbt!,

~23!

and so on for higher-order invariants.
The graph invariants of Eqs.~1!–~6! were generated usin

projection operators. Before explicitly presenting the pro
dure, we have to recognize that expressions like Eq.~23! are
still not adapted to bond patterns consisting of periodica
replicated unit cells.

B. Invariants for arbitrary unit cell choice

Practical statistical simulations of proton ordering ice
require unit cells large enough to approximate the proper
of an infinite system. However, cells much beyond ten wa
molecules allow an astronomical number of differe
hydrogen-bonded arrangements, seemingly making Mo
Carlo sampling@40# the only feasible approach for unit cel
large enough to approach the thermodynamic limit. Gra
invariants provide a link between the properties of large u
cells and cells small enough to allow accurateab initio stud-
ies, thereby providing an alternate to numerical simulatio
for larger unit cells. The key is the link between graph
variants for unit cells of different size, which we derive
this section. The derivation presented in this section is ra
technical. Some readers may prefer to first see the res
illustrated and confirmed for ‘‘square ice’’ in Sec. III C
where the relevance of these results to describing H-b
disorder is more apparent. If the main concepts are su
ciently clarified by the example in Sec. III C, this sectio
may be skipped.

Consider the smallest unit cell, defined by the translat
subgroupG. Since the hydrogen bonding pattern is repea
in all unit cells,

;t iPG, value oft ibr5value ofbr . ~24!

The above equation applies to thevalueof the bonds, not the
bond variables themselves. The translated bondt ibr resides
in a different unit cell frombr , and the image oft ibr under
a symmetry operation is different from the image ofbr , even
though they might share the same value of either11 or
21. This point is illustrated with an example for ‘‘squa
ice’’ in Sec. III C, which immediately follows this section
@See discussion following Eq.~34! below.# Periodic replica-
tion of the hydrogen bonding pattern, as expressed in
~24!, implies that only the coset representatives need to
projected to generate invariants,

I rs . . . 5Crs . . .Ĝ~brbs . . . !5Crs . . . (
bPG/G

Ĝpb~brbs . . . !

5Crs . . . uGu (
bPG/G

pb~brbs . . . !

5
1

uG/Gu (
bPG/G

pb~brbs . . . !. ~25!
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The second equality is a consequence of the periodicity
the lattice, as expressed in Eq.~24!. The third equality is
obtained by invoking the normalization condition, Eq.~13!.
The action ofĜ on bond variablesbrbs . . . produces a lin-
ear combination of bonds spanning the entire lattice. Red
tion of Ĝ(brbs . . . ) in thesecond line of Eq.~25! to a few
terms over a single unit cell multiplied byuGu is only true for
the value of the invariant, given that the pattern of bon
variables is periodically replicated.

For a unit cell O(nx3ny3nz) with basis
$nxax ,nyay ,nzaz%, the translation group, denoted a
Gnx3ny3nz

, can be written as

Gnx3ny3nz
5H ~tx

nx!u~ty
ny!v~tz

nz!wUu50,1, . . . ,
Nx

nx
21,

v50,1, . . . ,
Ny

ny
21, w50,1, . . . ,

Nz

nz
21J .

~26!

It is elementary to see thatG is equivalent toG13131 and
Gnx3ny3nz

,G131315G. For anyGnx3ny3nz
, we have

uGnx3ny3nz
u5uGu/nxnynz5NxNyNz /nxnynz . ~27!

For graphs satisfying the periodic boundary condition
unit cell O(nx3ny3nz), the value of a bond variable at
position translated by one of the members ofGnx3ny3nz

is
equal to the bond variable at the original position,

;t iPGnx3ny3nz
, value of t ibr5value of br . ~28!

Note that the above equation provides fewer constraints
the hydrogen bonds than Eq.~24! for the smaller unit cell
O(13131). As the periodic cell is enlarged, a greater v
riety of hydrogen bonding patterns is permitted until, as
cell size approaches the thermodynamic limit, it is capable
describing all manner of disorder in an ice-Ih crystal.

The full space group can be decomposed into cosets o
translation subgroupGnx3ny3nz

. While the the pure transla

tion group for the crystal with unit cellO(nx3ny3nz) is
smaller than forO(13131), the set of coset representativ
for O(nx3ny3nz) is correspondingly enlarged by a facto
of nxnynz . The set of coset representativespb

nx3ny3nz for the
larger cell is given by

$tx
uty

vtz
wpbubPG/G, u50,1, . . .nx21, v50,1, . . .ny21,

w50,1, . . .nz21%. ~29!

The space groupG may be decomposed into cosets app
priate for either the cellsO(13131) or O(nx3ny3nz),
4-7
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G5Gp1øGp2øGp3ø . . . 5Gnx3ny3nzp1
nx3ny3nzøGnx3ny3nzp2

nx3ny3nzøGnx3ny3nzp3
nx3ny3nzø . . . . ~30!
ee
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In the above equation we have decomposedG into right
cosets. For the full translation subgroup the choice betw
left and right cosets is irrelevant becauseG is a normal sub-
group of G, for which left and right cosets are identica
However,Gnx3ny3nz might not be a normal subgroup ofG,
and the left and right cosets may be distinct. In this ca
decomposition into right cosets is the most conveni
choice because, according to Eq.~28!, following the action
of a coset representative with any member ofGnx3ny3nz

leaves thevalue of the bond expression unchanged, as
plained in the discussion accompanying Eqs.~24! and ~25!.

The application ofĜ on a product of bond variables ca
be simplified in several ways. Following from the unit ce
conditions ofO(nx3ny3nz) expressed in Eq.~28! and in
analogy to Eq.~25!, application ofĜ only needs to involve
the coset representatives,

Ĝ~brbs . . . !5 (
bPG/Gnx3ny3nz

Ĝnx3ny3nz
pb

nx3ny3nz~brbs . . . !

5uGnx3ny3nz
u

3 (
bPG/Gnx3ny3nz

pb
nx3ny3nz~brbs . . . !. ~31!

The last line of Eq.~31! applies to thevalueof the expres-
sion when evaluated for a periodically replicated system,
e
se
ce

ed

ith

g
e
n

od
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the actual bond variables.@See discussion accompanyin
Eqs. ~24! and ~25!.# Using the definition of the coset repre
sentatives given in Eq.~29!, we can further simplify invari-
antsI rs . . . in unit cell O(nx3ny3nz),

I rs . . .
nx3ny3nz

5Crs . . .
nx3ny3nz (

u50

nx21

(
v50

ny21

(
w50

nz21

tx
uty

vtz
wF (

bPG/G
pb~brbs . . . !G

5
1

uG/Gunxnynz
(
u50

nx21

(
v50

ny21

(
w50

nz21

tx
uty

vtz
w

3F (
bPG/G

pb~brbs . . . !G . ~32!

Let us analyze result~32! in two different situations. First
consider when all the bonds within the productbrbs . . . lie
close to each other within the cellO(nx3ny3nz), in fact, so
close that they would fit within a smaller unit ce
O(13131). Then, for terms of this type the quantity i
square brackets in Eq.~32! for I rs . . .

nx3ny3nz is, within a con-
stant, an invariantI rs . . . for O(13131), evaluated for a
portion of the larger unit cellO(nx3ny3nz). Hence each
invariant for the small unit cell appears as an invariant of
larger unit cell,
I rs . . .
nx3ny3nz5

1

uG/Gunxnynz
(
u50

nx21

(
v50

ny21

(
w50

nz21

tx
uty

vtz
wI rs . . .

13131~brbs . . . !, brbs . . . PO~13131!. ~33!
men-

be

ell
ed.

ant
ri-

ces

s

@The converse, that each invariant in Eq.~32! generated from
brbs . . . lying within a small unit cell is an invariant of th
lattice with a smaller unit cell, is not true. This is becau
periodicity imposes fewer constrains for the larger latti
This point is illustrated in Sec. III C.# Of course, when the
unit cell is enlarged toO(nx3ny3nz), the small cell
H-bond pattern is, in general, not periodically replicat
within the large cell. Therefore, the value ofI rs . . .

nx3ny3nz is not
simply a multiple of the value ofI rs . . . for a smaller unit
cell.

Second, let us consider the case where the bonds w
the productbrbs . . . in Eq.~32! do not all lie within a region
of the size of the small cellO(13131). The invariants
generated forO(nx3ny3nz) in this case have no analo
from O(13131). These new invariants arise from th
greater variety of H-bond topologies permitted when the u
cell is enlarged. Since this class of invariants involves pr
.

in

it
-

ucts of bonds separated by distances greater than the di
sion of the small unit cellO(13131), these invariants will
describe longer ranged physical interactions, which would
expected to be weaker.

In summary, upon enlarging the unit cell from
O(13131) to O(nx3ny3nz), we find two types of invari-
ants. The first type are simply invariants of the small c
evaluated for portions of the large cell and then summ
When decomposing the dependence of energy~or other sca-
lar physical quantities! on H-bond topology in terms of in-
variants, we expect these invariants to provide the domin
contribution. The second type are fundamentally new inva
ants involving products of bonds separated by distan
greater than the dimension ofO(13131).

Our discussion of enlarging the cell fromO(13131) to
O(nx3ny3nz) applies equally when going from
O(nx3ny3nz) to even larger unit cell dimension
4-8
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O(nx83ny83nz8). This provides a natural hierarchy of ap
proximations for decomposing the dependence of sc
physical properties on H-bond topology. The most local a
dominant effects would be captured by fitting to invariants
the level of the small cellO(13131). If these effects are
completely dominant, then physical properties for c
O(nx3ny3nz) would be accurately predicted in terms
invariants that are from theO(13131) cell, summed over
all portions ofO(nx3ny3nz). Deviations from this picture
are used to parametrize physical properties in terms of
invariants forO(nx3ny3nz) that involve longer range in
teractions. This improved characterization could, in pr
ciple, be tested at a still larger levelO(nx83ny83nz8) until
convergence is achieved.

For simplicity, the transition from small to large unit cel
has been discussed here as a mere rescaling of the unit
tors by factors ofnx , ny , and nz . Quite often, convenien
choices of larger unit cells involve linear combinations
primitive lattice vectors. Our conclusions apply to the
cases as well, and we illustrate such unit cells in our tre
ment of ice below. Whatever may be our choice of unit c
the unit cell vectors are a subgroup of the full translat
group G. The translation subgroup of the unit cell vecto
can be used to decompose the full space group into r
cosets, and the link made between invariants for small
large unit cells.

C. An illustration for square ice

In Sec. I we exhibited the five second-order graph inva
antsI rs

232 associated with the 232 unit cell of our ‘‘square
ice’’ example. The formalism of Secs. III A and III B ex
plained how those graph invariants were generated with
jection operators, and exposed relations between graph
variants for unit cells of arbitrary size. The very practic
consequence of these relations is that calculations fea
for only small unit cells, such asab initio energetic calcula-
tions, can be applied to larger unit cells appropriate for s
tistical simulations. Since the formalism of Sec. III B may
forbidding at first glance, we illustrate the relationship b
tween graph invariants for unit cells of different size f
square ice. The entire set of second-order graph invari
I rs

434 for the 434 unit cell ~Fig. 3! is presented in this sec
tion, and we discuss the connections with the graph inv
ants of the smaller 232 unit cell.

FIG. 3. Labeling scheme for bonds in the 434 unit cell of
‘‘square ice.’’
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We begin by examining the result of projecting on
bonds 1a and 3a of the 434 unit cell,

I 1a,3a
434 5

1

32
$b1ab3a1b2ab4a1b5ab6a1b7ab8a

1b1bb3b1b2bb4b1b5bb6b1b7bb8b

1b1cb3c1b2cb4c1b5cb6c1b7cb8c

1b1db3d1b2db4d1b5db6d1b7db8d

1b1cb3a1b2cb4a1b5bb6a1b7bb8a

1b1ab3c1b2ab4c1b5ab6b1b7ab8b

1b1bb3d1b2bb4d1b5cb6d1b7cb8d

1b1db3b1b2db4b1b5db6c1b7db8c%. ~34!

Each of the first four lines are clearly recognizable asI 13
232 of

Eq. ~1! evaluated for each 232 sector of the 434 unit cell.
Each of the terms represents the product of bond varia
for bonds that are parallel and separated by one lattice un
either thex or y direction, an interaction that could be es
mated by a calculation for the smaller 232 cell. Terms like
b1ab3c may seem to violate this condition, since bondsa
and 3c lie three lattice units from each other in they direc-
tion. However, the termb1ab3c actually represents the inter
action of the bond 1a with another bond below it which lies
in a neighboring unit cell. Because of lattice periodicity, th
bond has the samevalue as its periodic image bond 3c.
Hence, in the termb1ab3c , the variableb3c represents the
value of another bond which is its periodic image in th
lattice. This example illustrates the distinction, made imm
diately after Eq.~24!, between bond variables and the
value. In expressions like Eq.~34! above, it is most conve-
nient to replace actual bond variables, which might be bo
variables outside a primary unit cell, with other variabl
within the primary cell that have the same value. Return
to Eq. ~34! above, we could have just as well said that t
term b1ab3c represents the interaction of a bond 3c with
another bond one lattice unit above it whose value is
same as its periodic image, bond 1a.

Expression~34! is an illustration of the general formulas
Eqs.~32! and~33!. The terms in the last four lines would b
identical in value to those of the first four lines if the lattic
still had 232 periodicity. Put another way, if the letters we
removed from the subscripts in the last four lines, there
enforcing 232 periodicity, the last four lines would dupli
cate the first four lines. These terms are indeed part ofI 13

232 ,
but they do not appear explicitly in Eq.~1! because their
value is identical to terms already present in that expressi
In the 434 setting these terms must be included as disti
contributions. Provided the additional invariants@Eqs.~40!–
~46! below# introduced at the 434 level do not make a sig
nificant contribution, the contribution of an invariant lik
I 1a,3a

434 to a scalar physical property like the energy could
estimated fromab initio calculations for the 232 unit cell.

As discussed in Sec. I, invariants likeI 1a,3a
434 of Eq. ~34!

have the physical interpretation of counting the number
4-9
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J.-L. KUO AND S. J. SINGER PHYSICAL REVIEW E67, 016114 ~2003!
cis and trans H bonds of square ice. Therefore, if Bjerru
conjecture was correct and the energetic difference betw
a cis and trans H bond was established for a 232 unit cell
and the parametera13 of Eq. ~2! established, then for the
434 unit cell the energy would be given by

E'E01a13I 13
434 , ~35!

wherea13 is the same number as in Eq. (2) and has be
established by detailed calculations on the smaller unit c.
Of course, an expression like Eq.~35! would only be appro-
priate if Bjerrum’s conjecture about cis and trans H bon
was valid. Therefore, an expression using additional inv
ants, like Eq.~7! for the 232 cell, would be more accurate
In the following paragraph we illustrate that each of the
variants appearing in Eq.~7! also appears as an invariant
the
434 cell @as predicted, in general, by Eqs.~32! and ~33!#,
and so thea ’s of Eq. ~7! determined for the smaller ce
provide information about the 434 cell.

Just like I 1a,3a
434 in Eq. ~34!, each of the graph invariant

given below in Eqs.~36!–~39! has a counterpart among tho
of the 232 unit cell, specifically in Eqs.~3!–~6!,

I 2a,3a
434 5

1

64 (
a,b5a,b,c,d

~b2ab3b1b1ab4b1b6ab7b1b5ab8b!,

~36!

I 1a,2a
434 5

1

32H (
a5a,b,c,d

~b1ab2a1b3ab4a1b5ab7a1b6ab8a!

1 (
(a,b)5(a,b),(c,d)

~b1ab2b1b2ab1b

1b3ab4b1b4ab3b!

1 (
(a,b)5(a,c),(b,d)

~b5ab7b1b7ab5b1b6ab8b

1b8ab6b!J , ~37!

I 1a,5a
434 5

1

64H (
a5a,b,c,d

~b1ab5a2b3ab5a2b1ab6a1b2ab6a

1b3ab6a2b4ab6a1b3ab7a2b3ab8a1b4ab8a!

1 (
(a,b)5(a,c),(b,d)

~b1ab8b1b8ab1b2b2ab8b

2b8ab2b2b7ab1b2b1ab7b!

1 (
(a,b)5(a,b),(c,d)

~b5ab4b1b4ab5b2b2ab5b

2b5ab2b2b4ab7b2b7ab4b!

1 (
(a,b)5(a,d),(c,b)

~b2ab7b1b7ab2b!J , ~38!
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I 1a,1a
434 5

1

32 (
a5a,b,c,d

~b1a
2 1b2a

2 1b3a
2 1b4a

2

1b5a
2 1b6a

2 1b7a
2 1b8a

2 !. ~39!

Each of the invariants listed so far for the 434 unit cell
involves products of bonds that lie sufficiently close to ea
other so that they also generate an invariant for the sma
232 cell, and their contribution to scalar physical propert
can be estimated from calculations for the smaller 232 cell.
In other words, if thea ’s in Eq. ~7! were determined for the
232 cell, then an estimate for the properties of the larg
number of H-bond isomers of the 434 cell would be avail-
able.

If the energy or free energy of the 232 unit cell was
parametrized according to the value
I 13

232 , I 23
232 , I 12

232 , I 15
232 , andI 11

232 , then a first guess for the
energy of configurations of the 434 cell would be in terms
of the invariants in Eqs.~34!–~39!. At this level of approxi-
mation, the parameters needed to describe the many H-b
isomers of the 434 cell, the a ’s of Eq. ~16!, would be
known from calculations for the smaller 232 cell, and only
the enumeration of topologies required for the 434 cell.
Perhaps comparison with more expensive, detailed calc
tions for the 434 cell would indicate reasonable conve
gence of the energy. If not, use of invariants involving bo
pairs further separated from each other would be an optio
improve the description. This would involve invariants f
the 434 cell which have no counterpart in the 232 cell and
are listed below.

FIG. 4. The labeling of H bonds, and their canonical orientati
are shown here for the Orth(13131) unit cell. In the canonical
orientation, all of the H bonds are cis.
4-10
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I 1a,3b
434 5

1

32H (
(a,b)5(a,b),(c,d),(a,d),(c,b)

~b1ab3b1b3ab1b1b4ab2b1b2ab4b!

1 (
(a,b)5(a,c),(b,d),(a,d),(c,b)

~b6ab5b1b5ab6b1b8ab7b1b7ab8b!J , ~40!

I 1a,2c
434 5

1

32H (
(a,b)5(a,c),(c,b),(a,d),(b,d)

~b1ab2b1b2ab1b1b3ab4b1b4ab3b!

1 (
(a,b)5(a,b),(c,b),(a,d),(c,d)

~b5ab7b1b7ab5b1b6ab8b1b8ab6b!J , ~41!

I 1a,5c
434 5

1

128H (
a5a,b,c,d

~b2ab5a2b4ab5a1b1ab7a1b4ab7a2b1ab8a1b2ab8a!

1 (
(a,b)5(a,c),(a,b),(b,d),(c,d)

~b1ab6b1b6ab1b2b3ab6b2b6ab3b1b4ab6b1b6ab4b2b1ab5b2b5ab1b1b3ab5b

1b5ab3b2b2ab6b2b6ab2b2b2ab7b2b7ab2b2b3ab7b2b7ab3b2b4ab8b2b8ab4b1b3ab8b1b8ab3b!

1 (
(a,b)5(a,d),(c,b)

~b1ab7b1b7ab1b2b1ab8b2b8ab1b1b2ab5b1b5ab2b1b2ab8b1b8ab2b2b4ab5b2b5ab4b

1b4ab7b1b7ab4b!J , ~42!

I 1b,5c
434 5

1

64H (
(a,b)5(b,c),(a,d)

~b1ab5b1b5ab1b2b1ab6b2b6ab1b1b2ab6b1b6ab2b1b4ab8b1b8ab4b

2b5ab3b2b3ab5b1b6ab3b1b3ab6b1b3ab7b1b7ab3b2b3ab8b2b8ab3b2b6ab4b2b4ab6b!

1 (
(a,b)5(a,c),(b,d)

~b4ab5b1b5ab4b2b2ab5b2b5ab2b2b4ab7b2b7ab4b!

1 (
(a,b)5(a,b),(c,d)

~b1ab8b1b8ab1b2b1ab7b2b7ab1b2b2ab8b2b8ab2b!1 (
a5a,b,c,d

b2ab7aJ , ~43!

I 1b,1c
434 5

1

16H (
(a,b)5(b,c),(a,d)

~b1ab1b1b2ab2b1b3ab3b1b4ab4b1b5ab5b1b6ab6b1b7ab7b1b8ab8b!J , ~44!

I 1a,1c
434 5

1

16H (
(a,b)5(a,c),(b,d)

~b1ab1b1b2ab2b1b3ab3b1b4ab4b!1 (
(a,b)5(a,b),(c,d)

~b5ab5b1b6ab6b1b7ab7b1b8ab8b!J ,

~45!

I 1a,1b
434 5

1

16H (
(a,b)5(a,b),(c,d)

~b1ab1b1b2ab2b1b3ab3b1b4ab4b!1 (
(a,b)5(a,c),(b,d)

~b5ab5b1b6ab6b1b7ab7b1b8ab8b!J .

~46!
-
th
e

ep

nu-
ic
ice-
ing
Equations~40!–~46!, like Eqs. ~34!–~39!, reduce to graph
invariants found for the 232 unit cell when the letter sub
scripts are removed, thereby enforcing the periodicity of
smaller cell. However, it is crucial to realize that the sev
invariants in Eqs.~40!–~46! are fundamentally different in
nature because they involve products of bonds further s
rated in the lattice than the five invariants of Eqs.~34!–~39!.
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IV. GRAPH INVARIANTS AND GRAPH ENUMERATION
FOR ICE-Ih

In this section, we report graph invariants and graph e
meration results for ice-Ih. Historically, both orthorhomb
and hexagonal unit cells have been used in the study of
Ih, most often the former, due to the convenience of us
4-11
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orthogonal unit vectors. The symmetry of the oxygen latt
of ice-Ih has been identified asP63 /mmc since the late
1920s@41,42#. Some recent experiments reveal a transit
to a low-temperature, proton-ordered phase, ice-XI, in wh
the hexagonal symmetry of the oxygen lattice of ice-Ih
broken by ordering of the hydrogen bonds@9–17#. The space
group of ice-XI isCmc21.

A. Invariants for the eight-molecule water orthorhombic
unit cell

The series of ice-Ih unit cells formed by the cell vecto

a5A8

3
Rx̂,

b5A8Rŷ, ~47!

c5
8

3
Rẑ,

has been popular because these unit cell vectors are co
niently orthogonal. In Eq.~47!, R is the distance betwee
nearest neighbor oxygens, andx̂, ŷ, andẑ are Cartesian uni
vectors. The smallest orthorhombic unit cell is an eig
molecule unit cell~Fig. 4!. Extending our notation to distin
guish several different choices of unit cell vectors for ice-
we use Orth(na3nb3nc) in place of O(nx3ny3nz)
to designate a unit cell obtained by extending the sm
est orthorhombic unit cellna times along thea axis, nb
times along theb axis, and nc times along thec axis.
Hence the eight-water molecule orthorhombic cell
labeled Orth(13131), and there are three unit cell
Orth(23131), Orth(13231), and Orth(13132),
having 16 water molecules, but their geometries are v
different.

All first-order graph invariants for the ice lattice are ide
tically zero. A set of 13 second-order graph invariants
obtained by projecting on all bond pairs from th
Orth(13131) unit cell according to Eq.~31!. If the projec-
tion operator acts on a pair of bonds that lie along thec axis,
then all symmetry operations will produce other pairs t
also lie along thec axis. Hence there is a subset of secon
order invariants, three in all, that are composed totally
bond pairs along thec direction. Similarly, there is anothe
subset of two second-order invariants composed totally
bond pairs that lie within thea-b bilayers. Finally, there is a
third subset of eight invariants coupling bonds from thec
anda-b bilayers.

The following set of invariants are constructed exc
sively from bonds along thec direction:

I 4a,4b5
1

12
$b4a

2 1b4b
2 14b4ab4b1b8a

2 1b8b
2 14b8ab8b%,

~48!

I 4a,8a5
1

6
$2b4ab8a1b4ab8b12b4bb8b1b4bb8a%, ~49!
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I 4a,4a5
1

4
$b4a

2 1b4b
2 1b8a

2 1b8b
2 %. ~50!

I 4a,4b describes interactions betweenc-axis bonds that are
nearest neighbors above the same bilayer.~The squared term
b4a

2 appears becauseb4a is nearest neighbor to its own imag
in an adjacent unit cell, and similarly for the other squar
terms inI 4a,4b .) This invariant is what one would obtain i
one were to map the energy of a two-dimensional shee
c-axis bonds onto a two-dimensional triangular lattice. T
possible dependence of energy upon ferroelectricity or a
ferroelectricity ofc-axis bonds will be captured by these in
variants. Notice how the possible coupling betweenc-axis
bonds between two bilayers would be described at this le
by invariantsI 4a,8a .

The remainder of the invariants for the Orth(13131)
cell are presented in the Appendix. We have also gener
invariants and determined the number of linear independ
invariants for much larger unit cells. The total number
second-order invariants and the number of linearly indep
dent invariants are reported below in Fig. 5, but we do
report the explicit form of invariants for larger unit cells i
this paper. Properties that have been postulated to affec
energy of the ice lattice, such as the number of cis or tran
bonds@43# in the lattice or the degree of ferroelectricity i
the lattice, can be expressed as linear combinations of th
second-order invariants. In addition, the invariants must a
describe other topological features that have not been
cussed in the literature, but which have not been ruled ou
possible factors affecting the energy. Having the full set
second-order invariants allows an unbiased analysis of wh
topological features are most significant.

The graph invariants can be viewed as forming a se
basis vectors in a space of H-bond configurations. For
ample, there are 16 symmetry-distinct H-bond arrangeme
possible for the Orth(13131) unit cell that we picture as
forming a 16-dimensional vector space.~Further discussion

FIG. 5. Each unit cell is accompanied by three numbers, wh
from left to right are the number of second-order graph invarian
the number of linearly independent invariants for graphs that sat
the ice rules for neutral water, and the number of symmetry-dist
H-bond configurations for that unit cell.
4-12
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of the enumeration of the actual H-bond arrangement
given below in Sec. IV B 1.! Each invariant is mapped to
vector whose 16 components are the value of that invar
evaluated for each of the H-bond arrangements. Since t
are only 13 second-order invariants, they cannot poss
span the 16-dimensional space of symmetry-distinct H-b
arrangements. In fact, for H-bond configurations that ob
the ice rules; there is a high degree of linear depende
among the second-order invariants. Consequently, the s
spanned by the second-order invariants is only of dimens
6. Of course, adding third- and higher-order invariants wo
incorporate further flexibility and more fitting paramete
Our experience to date for clusters indicates that energeti
well described at the level of second-order invariants@21#,
but this conclusion will have to be tested for ice. If trunc
tion at second-order invariants is found to be a reason
approximation for ice, this provides strong constraints
how scalar physical properties might depend on H-bond
pology.

B. Enumeration of H-bond arrangements in ice-Ih

In addition to their usefulness in describing physical pro
erties, graph invariants also provide an efficient means
generate all symmetry-distinct H-bond arrangements of a
nite, or periodic, system. Eliminating symmetry equivale
configurations from a list ofN graphs is nominally anO(N2)
operation, because all pairs should be compared for sym
try equivalence. However, graphs with different values
any invariant must be symmetry distinct. This suggests
efficient scheme for eliminating symmetry equivalent grap
The list of graphs is partitioned into subsets such that e
subset contains graphs with unique values of one or m
invariants. Hence, a graph in one subset cannot be symm
equivalent to another graph in a different subset. As a res
symmetry equivalence need only be tested among graph
the same subset, reducing the operation count fromO(N2) to
O(N ln N). Details are furnished in our previous work@21#.

Results of this efficient enumeration scheme are prese
here for several unit cells of ice-Ih. We provide results
small unit cells because, as mentioned in the introduct
there are conflicting results in the literature for t
symmetry-distinct H-bond arrangements of cells such as
eight-member orthorhombic cell. We also provide results
large unit cells, cells whose size can be considered appro
ate for statistical simulations, to identify topological prope
ties of the ice lattice in the statistical limit, and to demo
strate the feasibility of large-scale enumeration.

1. Enumeration results for the eight-member orthorhombic cel

In 1987 Howe reported that 17 symmetry-distinct H-bo
arrangements were possible for the smalled orthorhom
cell, Orth(13131) @6#. In 1998, Lekner enumerated the 11
H-bond arrangements possible for Orth(13131) before
symmetry reduction, and then eliminated redundant str
tures according to the functional form of the Coulomb int
action @7#. This is not necessarily the same as reduction
symmetry equivalence. Lekner observed 17 distinct forms
the Coulomb potential function. Among the 17 function
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forms, two pairs had the same value, leading to only
distinct Coulomb energies. In 1998 Buch, Sandler, a
Sadlej sought to enumerate the distinct configurations of
Orth(13131) cell @8#. They employed a Monte Carlo
scheme to generate H-bond configurations
Orth(13131), and then eliminated redundant configur
tions according to physical properties such as total ene
and dipole moment. Buch and co-workers found 16 disti
arrangements.

In this work, we use symmetry properties of the H-bo
topology to eliminate redundant configurations. This is t
same criterion used by Howe, but we obtain different resu
Using the functional form of a potential function is problem
atic because symmetry-distinct structures may have the s
energy for certain potential functions, but the degener
may be lifted for other potentials. To give an elementa
example originally noted by Lekner@7#, the total oxygen-
oxygen and oxygen-hydrogen Coulomb interaction is ide
cal for all H-bond topologies in an idealized ice-Ih lattic
where all covalent and nearest neighbor bond lengths
equal. Differences among the H-bond topologies arise ex
sively from hydrogen-hydrogen Coulomb interactions. W
will encounter a more subtle example below, in which tw
structures have identical bond lengths, and therefore are
generate with respect to all pairwise additive potentials,
are symmetry distinct. Finally, Monte Carlo methods may
used exhaustively for the smallest unit cells, but would
highly impractical for exhaustive enumeration of some of t
larger unit cells we present below.

Following the enumeration procedure described in o
earlier work @21#, we obtain 16 symmetry-distinct H-bon
topologies for Orth(13131). Two configurations out of the
16 are of particular note~Fig. 6!. These configurations ar
related to each other by reversal of all H-bonds, yet are s
metry distinct. In an idealized structure where covalent a
nearest neighbor oxygen-oxygen distances are the sam

FIG. 6. These two configurations of the Orth(13131) cell are
symmetry distinct, yet are related to each other by reversal of a
bonds. The left-hand structure is converted into the right-hand
by first reflecting through a horizontal plane that bisects the fig
midway between the twoa-b bilayers, followed by reversing all the
H bonds.
4-13
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J.-L. KUO AND S. J. SINGER PHYSICAL REVIEW E67, 016114 ~2003!
all molecules, we have verified that the two structures sho
in Fig. 6 have identical distributions of pair distances out
2.9R. From the structural information given in Lekner
work, it is clear that these two structures are the pair t
Lekner found to be energetically degenerate with respec
the Coulomb potential, as they would be for any pairw
additive potential.

2. Sequences of unit cells for ice-Ih

The primitive unit cell of ice-Ih is defined by the follow
ing unit vectors:

a5A8

3
Rx̂,

b52A2

3
Rx̂1A2Rŷ, ~51!

c5
8

3
Rẑ.

We use hex(na3nb3nc) to label unit cells built from mul-
tiples of the primitive unit cell.

We will also consider another hexagonal system c
structed from the following unit vectors:

a5A6Rx̂1A2Rŷ,

b5A8Rŷ, ~52!

c5
8

3
Rẑ.

These unit cells, designated here as Hex(na3nb3nc), form
a convenient sequence of whennx5ny5n. The
hex(n3n3nc) and Hex(n3n3nc) cells can be taken to b
prisms with the full hexagonal symmetry of the ice-Ih lattic
@An example of the Hex(13131) unit cell is shown in Fig.
9~b!.#

The Orth(na3nb3nc), hex(na3nb3nc), and
Hex(n3n3nc) cells stand in relation to each other as sho
in Fig. 5. The arrows in that diagram represent a member
relation between the oriented graphs of the cells linked by
arrow. When the set of oriented graphs of a smaller unit
is a subset of the graphs of a larger unit cell, the two cells
joined by an arrow. In effect, the arrows represent a chain
which an invariant from smaller unit cells can predict t
properties of larger cells. Also shown in Fig. 5 are the nu
ber of symmetry-distinct graphs that would arise from the
rules for neutral water, second-order graph invariants,
linearly independent second-order graph invariants for n
tral water graphs. The number of linearly independent gr
invariants appears to level off and remain quite small, rea
ing only 14 for the Orth(33131) and Hex(23231) cells.
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C. Analysis of enumeration results

While energetic calculations are beyond the scope of
paper, constraints on ice structures, as revealed by enum
tion of H-bond topologies, do provide some insights into t
behavior of ice-Ih and possible low-temperature phases.
suming a random distribution of H-bond topologies, the st
dard model going back to the work of Pauling@1#, we are
able here to predict some statistical properties of ice-Ih, s
as dipole moment~in a bond dipole model!. In most previous
simulations of ice-Ih, the H-bond topology in the simulatio
cell has been chosen to have zero dipole moment, and o
minimum higher multipoles@40,44,45#. Here we report on
how likely or unlikely these low multipole configuration
will be. Our explorations will also categorize possible can
dates for the low-temperature phase of ordinary ice. Ca
lations of water dimer indicate that the lowest energy top
ogy would contain maximum fraction of trans bonds, y
recent experiments have been interpreted to favor a fe
electric structure, where the fraction of trans is 25%, far fro
optimal according to Bjerrum’s conjecture@25,26#. We will
explore the correlation between ferroelectricity and fract
of trans bonds.

We have accumulated data on H-bond geometry and
pole moments for the variety of unit cells shown in Fig.
The results are all qualitatively the same, both for the ort
rhombic and hexagonal cells. Therefore, we present the
sults for the largest unit cell, Hex(23231), whose

FIG. 7. The top panel shows the distribution of dipole mome
magnitude arising from H bonds along thec direction in a 48-water
molecule unit cell@Hex(23231)# of ice-Ih. Measured in bond
dipoles, the maximum dipole moment is 24, the number of H bo
along thec axis. The bottom panel shows the distribution of perce
trans H bonds among the 96 H bonds of the unit cell.
4-14
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FIG. 8. Scatter plot~top row! and three-dimensional representations~bottom row! of the distribution of H-bond isomers in ice-Ih resolve
according to dipole moment and percent trans H bonds. The three-dimensional plots best convey where the bulk of the distribution
while the scatter plots depict the locus of possible structures, regardless of their frequency. From left to right are the distribution
dipole moment of the unit cell, dipole moment generated by H bonds along thec axis, and dipole moment generated by H bonds lying with
the puckered hexagonal sheets parallel to thea and b crystallographic axes. The data were generated for the 48-water mole
Hex(23231) unit cell, for which there are 2404 144 962 isomers satisfying periodic ice rules, of which 8360 361 are symmetry d
The dipole moment is reported in units of OH bond dipoles.
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2404 144 962 configurations~8360 361 symmetry distinct!,
best approximate the infinite system limit. The dipole m
ment is calculated in a bond dipole approximation, and
bond dipoles are assumed to be parallel to the oxyg
oxygen vector of the H bonds. We report dipoles in units
the bond dipoles. Dipole moment arising from bonds alo
the c axis, the origin of ferroelectricity in the propose
Cmc21 structure of ice-XI, are of particular interest. Th
distribution, shown in the top panel of Fig. 7, indicates th
complete alignment of H bonds along thec axis is extremely
rare. Zero dipole moment, as often imposed in compu
simulations of ice-Ih@40,44,45#, is relatively frequent, but
still is not typical, only occurring in 27.5% of H-bond a
rangements. The bottom panel of Fig. 7 shows that nearly
H-bond arrangements contain a percent of trans H bo
between 40% and 80%, with the maximum near 60%.

The proposed ferroelectricCmc21 structure of ice-XI is
rather unusual among ferroelectric structures in that it c
tains a small fraction of trans H bonds. In th
01611
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Orth(13131) unit cell, the H-bond arrangements with
bonds completely aligned along thec axis tend to have smal
percentage of trans bonds: one isomer has 50% trans,
~including Cmc21) have 25% trans, one has 12.5% tran

FIG. 9. Two examples of small unit cells with complete ferr
electric order along thec axis coexisting with a high percentage o
trans bonds.~a! A 16-water molecule Orth(23131) cell with 62%
trans bonds,~b! a 12-water molecule Hex(13131) cell with 75%
trans bonds.
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and one has 0% trans. This is an artifact of the small unit
size. In larger unit cells the completely aligned structu
tend to have a larger percentage of trans bonds. This prop
is illustrated in the two-dimensional distributions of dipo
moment and fraction of trans bonds shown in Fig. 8. Loo
ing at the top, center panel of Fig. 8, we find that the p
centage of trans H bonds in arrangements with maxim
ferroelectricity along thec axis extends from a minimum o
0% to a maximum of 75%.

Contrary to what one might expect by only consideri
the Orth(13131) unit cell, there exist several examples
slightly larger unit cells with complete ferroelectric order
thec direction and high percentage of trans bonds, as sh
in Fig. 9. As one can see from Fig. 8, theCmc21 structure is
very atypical, at least with respect to dipole moment a
fraction of trans H bonds. Optimization of a large unit cell
Monte Carlo methods@8,40# would be unlikely to uncover
either theCmc21 structure or the examples of Fig. 9. En
meration is an important complement to Monte Carlo sea

V. CONCLUSION

Larger unit cells of ice-Ih, needed to simulate therm
properties and phase transitions, can be arranged in a
nomically large numbers of H-bond configurations. Ene
differences among these configurations are rather smal
accurate and expensiveab initio methods are likely to be
required to understand the low-temperature behavior of
Ih. Graph invariants provide a means of describing the
ergy, free energy, and other scalar physical properties of
large number of configurations using only a handful of p
rameters. It is significant to note that, even though the nu
ber of H-bond arrangements grows exponentially with s
tem size, the number of linear independent invariants gro
quite slowly and appears to approach a finite limit. Featu
of the H-bond topology in ice-Ih previously suggested
determinants of the energy, such as trans and cis H bo
@25,26#, emerge in our theory as some of the possible lo
order invariants. However, graph invariants provide ma
other possible links between H-bond topology and sca
physical properties which have not been considered, but
turn out to be significant.

The hierarchy of approximations provided by graph
variants can be arranged on a two-dimensional grid. On
axis, the level of approximation is distinguished by the nu
ber of bond variables multiplied together in each term.
variants can be constructed as linear combinations of si
bond variables~first-order invariants!, products of two bond
variables ~second-order invariants!, three bond variables
~third-order invariants!, and so on. We hope that the expa
sion of scalar physical properties in terms of invariants c
verges with relatively low-order invariants, a property w
have demonstrated for finite clusters of water molecules@21#.
The second axis of the grid of approximations is unique
periodic systems. The crystal can be constructed from
cells of different size, with large unit cells needed to descr
a disordered solid such as the H-bond disordered phas
ice-Ih. Graph invariants can be ordered according to whe
they are a linear combination of products of bonds from
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small unit cell, or whether the bonds only belong to a larg
unit cell. We have shown that graph invariants of larger u
cells fall into two categories. The first class involves bon
that are close enough to be part of a small unit cell. T
dependence of the energy on these invariants can be d
mined from smaller unit cells, and used to determine
energy of the much larger number of H-bond arrangeme
of the large cell. The second class of invariants involv
products of bonds that only occur in the large cell. Even
ally, as the unit cell is progressively enlarged, the contrib
tion arising from far-away bonds will become negligible. Th
rate of convergence for this second of the two axes in
grid of approximations has not yet been tested, and aw
the results of periodicab initio calculations.
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APPENDIX: INVARIANTS OF THE Orth „1Ã1Ã1… CELL

There are 13 independent invariants for the orthorhom
O(13131) unit cell of ice-Ih. Three of those, Eqs.~48!–
~50!, are discussed in Sec. IV A. The remaining are p
sented in this appendix.

The following invariants involve products of bonds th
lie within the same bilayer:

I 1a,2b5
1

24
~2b5bb6a12b5ab6b22b1bb2a22b1ab2b1b1ab3a

1b1bb3a1b1ab3b1b1bb3b1b2ab3a1b2bb3a

1b2ab3b1b2bb3b1b5ab7a1b5bb7a1b5ab7b

1b5bb7b2b6ab7a2b6bb7a2b6ab7b2b6bb7b!,

~A1!

I 1a,2a5
1

24
~2b5ab6a12b5bb6b22b1ab2a22b1bb2b1b1ab3a

1b1bb3a1b1ab3b1b1bb3b1b2ab3a1b2bb3a

1b2ab3b1b2bb3b1b5ab7a1b5bb7a1b5ab7b

1b5bb7b2b6ab7a2b6bb7a2b6ab7b2b6bb7b!,

~A2!

I 1a,1b5
1

24
~4b3ab3b14b7ab7b12b1ab1b12b2ab2b

12b6ab6b12b5ab5b1b1a
2 1b1b

2 1b2a
2 1b2b

2 1b5a
2

1b5b
2 1b6a

2 1b6b
2 !, ~A3!
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I 1a,1a5
1

12
~b1a

2 1b1b
2 1b2a

2 1b2b
2 1b3a

2 1b3b
2 1b5a

2 1b5b
2 1b6a

2

1b6b
2 1b7a

2 1b7b
2 !. ~A4!

The next set of invariants involves bonds that lie with
adjacent bilayers.

I 1a,6b5
1

24
~2b2bb5a12b2ab5b22b1bb6a22b1ab6b2b3ab5a

2b3bb5a2b3ab5b2b3bb5b1b3ab6a1b3bb6a

1b3ab6b1b3bb6b2b1ab7a2b1bb7a2b1ab7b

2b1bb7b2b2ab7a2b2bb7a2b2ab7b2b2bb7b!,

~A5!
01611
I 1a,6a5
1

24
~2b2ab5a12b2bb5b22b1ab6a22b1bb6b2b3ab5a

2b3bb5a2b3ab5b2b3bb5b1b3ab6a1b3bb6a

1b3ab6b1b3bb6b2b1ab7a2b1bb7a2b2ab7a

2b2bb7a2b1ab7b2b1bb7b2b2ab7b2b2bb7b!,

~A6!

I 1a,5a5
1

6
~b1ab5a1b1bb5b2b2ab6a2b2bb6b

1b3bb7a1b3ab7b!, ~A7!

I 1a,5b5
1

12
~2b3ab7a12b3bb7b1b1ab5a1b1bb5a1b1ab5b

1b1bb5b2b2ab6a2b2bb6a2b2ab6b2b2bb6b!.

~A8!

Finally, there is a set of invariants that couple bonds t
lie along thec axis with bonds in a bilayer.
I 1a,4b5
1

48
~b1ab4a1b1bb4a1b1ab4b1b1bb4b1b1ab8a1b1bb8a1b1ab8b1b1bb8b1b2ab4a1b2bb4a1b2ab4b1b2bb4b

1b2ab8a1b2bb8a1b2ab8b1b2bb8b2b4ab5a2b4bb5a2b4ab5b2b4bb5b1b4ab6a1b4bb6a1b4ab6b1b4bb6b

2b5ab8a2b5bb8a2b5ab8b2b5bb8b1b6ab8b1b6bb8b1b6ab8a1b6bb8a22b3bb8b22b3ab8a22b3ab4b

22b3bb4a12b7bb8a12b4ab7a12b4bb7b12b7ab8b!, ~A9!

I 1a,4a5
1

24
~b1ab4a1b2ab4a2b3ab4a1b1bb4b1b2bb4b2b3bb4b2b4ab5a2b4bb5b1b4ab6a1b4bb6b1b4bb7a1b4ab7b

1b1ab8a1b2ab8a2b3bb8a2b5ab8a1b6ab8a1b7ab8a1b1bb8b1b2bb8b2b3ab8b2b5bb8b1b6bb8b1b7bb8b!.

~A10!
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